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Abstract. Opportunistic routing has increased the efficiency and reliability of Cognitive 
Radio Ad-Hoc Networks (CRAHN). Many researchers have developed opportunistic routing 
models, among them the Spectrum Map-empowered Opportunistic Routing (SMOR) model, 
which is considered a more efficient model in this field. However, there are certain limitations 
in SMOR, which require attention and resolution. The issue of delay and degradation of packet 
delivery ratio due to non-consideration of network bandwidth and throughput are addressed in 
this paper. In order to resolve these issues, a hybrid optimization algorithm comprising firefly 
optimization and grey wolf optimization algorithms are used in the basic SMOR routing model. 
Thus, developed Hybrid Firefly and Grey-Wolf Optimization-based SMOR (HFGWOSMOR) 
routing model improves the performance by high local as well as global search optimization. 
Initially, the relationship between the delay and throughput is analyzed and then the 
cooperative multipath communication is established. The proposed routing model also 
computes the energy values of the received signals within the bandwidth threshold and time; 
hence, the performance issues found in SMOR are resolved. To evaluate its efficiency, the 
proposed model is compared with SMOR and other existing opportunistic routing models, 
which show that the proposed HFGWOSMOR performs better than other models. 

Keywords: Cognitive Radio Ad Hoc Networks, Opportunistic routing, Spectrum Map-
empowered Opportunistic Routing, Firefly optimization, Grey-Wolf optimization, bandwidth 
threshold. 

1. Introduction. Cognitive radio ad hoc network (CRAHN) is a type
of distributed, self-organizing, self-Configuring wireless network in which 
the radios in the network can adapt their transmission and reception 
parameters in real-time, depending on the availability of the frequency 
spectrum. 

The cognitive radio devices can sense the presence of other radio 
signals in specific bands, and dynamically adjust their transmission 
parameters to avoid interference with other devices, and, thus, maximizing 
the utilization of the available spectrum. This approach leads to a more 
efficient use of the radio spectrum, reducing the possibility of interference 
and increasing the capacity of the network. This type of Network uses 
cognitive radio technologies to allocate network resources dynamically such 
as frequency, bandwidth and power. 

In CRAHN, nodes (CR-users) can sense the availability of the radio 
spectrum and adjust their transmission parameters accordingly to avoid 
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interference with other users. This enables efficient utilization of the free 
available spectrum and improves network performance [1, 2]. 

CRAHNs can automatically search, monitor and use the available 
free spectrum to take care of the problem of the spectrum resource shortage 
and low utilization rate without affecting licensed users. 

The cognitive radio rule has acquainted the thought with abuse 
spectrum holes (i.e., bands) which result from the demonstrated 
underutilization of the electromagnetic spectrum by present-day wireless 
communication and broadcasting advancements [3]. 

CRAHNs are often used in military, rural connectivity and 
emergency communication scenarios where the availability of spectrum is 
limited and rapidly dynamically reconfigure itself to maintain 
communication in the face of changing conditions [4]. 

The components of a Cognitive Radio Ad Hoc Network (CRAHN) 
are [4, 5, 6]: 

− Cognitive Radio Nodes: The main component of the CRAHNs 
is the cognitive radio nodes (Secondary-User), which are equipped with the 
radio transceivers and the processing capabilities to monitor and adapt to 
the surrounding radio environment [6]. 

− Spectrum Sensing: Each node in CRAHNs infrastructure is 
equipped with a spectrum-sensing module to detect the presence of other 
users in the radio environment. 

− Decision Making: Based on the information gathered through 
the sensing of spectrum, the nodes make decisions on which frequency band 
to use for communication, and how to allocate the available spectrum 
resources [7]. 

− Spectrum Management: The nodes in a CRAHN use their 
cognitive abilities to manage the available spectrum resources dynamically 
to avoid interference with other users and optimize the performance of the 
network. 

− Routing the nodes in a CRAHN use routing protocols to 
dynamically establish and maintain communication links with other nodes 
in the network [8, 9]. 

− Network Management: CRAHNs use the network management 
techniques to monitor network performance and make adjustments to ensure 
optimal operation [10].  These components work together to enable 
dynamic, self-organizing, and efficient communication in a Cognitive Radio 
Ad Hoc Network [5, 6]. 

In cognitive radio, the secondary users (SUs) refer to a specific 
device that dynamically accesses and uses the underutilized portions of the 
radio spectrum that are licensed to primary users (PUs) such as government 
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agencies or licensed commercial operators. The secondary user (US) 
operates on a non-interfering basis with the primary users and can vacate 
the spectrum when the primary user requests access [7, 8]. 

The primary users in a cognitive radio network are the licensed or 
authorized users who have been assigned the use of a particular frequency 
band by a regulatory authority, such as a government or standardization 
organization [8, 9]. 

They have the primary rights to use the spectrum bands and are 
usually traditional users, such as government agencies, television and the 
radio broadcast stations, or mobile networks. They have priority over the 
secondary users in accessing the radio spectrum and can use it without 
interference [10]. 

The main aim of CR-AHNs is to increase the utilization of available 
spectrum by detecting and avoiding busy frequency bands, and exploiting 
unused ones. The nodes in CR-AHNs can also cooperate and share 
information with each other to make more efficient decisions about 
spectrum utilization. This technology results in increased network 
performance, efficiency and capacity, energy consumption, provides better 
quality of service to users, and improved overall performance [11]. On the 
other hand, the key idea behind CRAHNs is to allow wireless devices to 
sense and adapt to changes in the radio environment, such as the presence of 
other devices, interference, or changes in channel conditions. 

In order to handle these difficulties, the opportunistic routing (OR) 
strategy has been connected in CRAHNs with a specific end goal to uncover 
the effect of the spectrum availability on the stability of the routing. 
Considering the predominance of the broadcast feature and the 
exceptionally decent variety of wireless mediums, the OR strategy has been 
earlier proposed in the amazingly opportunistic routing protocol (ExOR) 
[6, 7, 12]. Instead of firstly deciding the following hop SU and after that 
sending the packet to the following hop SU, a SU with the OR strategy 
broadcasts the packet keeping in mind the end goal to get the outcomes that 
all neighbors of the SU have the chance to get the packet and help with 
forwarding the data packets. 

Contrasted with the traditional routing methodologies, the OR 
strategy brings the high throughput gains. Additionally, it is likewise hard to 
keep up the routing table for a SU because of the embodiment of dynamic 
spectrum access [13]. Consequently, the pre-decided end-to-end routing 
cannot be fitting for the CRAHN situation. Because of the way that the OR 
strategy does not require the earlier foundation of the routes, the OR 
strategy is more suitable to be utilized in the CRAHN situation with 
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dynamic changes of channel availability because of the dynamic behavior of 
PUs [9, 14]. 

On analysis, the SMOR routing model [10] has been found to be the 
most efficient OR strategy for CRAHNs. Previously some improved models 
of OR have been proposed [11 – 16]. However, due to the limitations of 
performance due to network bandwidth and throughput in SMOR, leads this 
paper to develop an HFGWO-SMOR routing model, which utilized hybrid 
Firefly, and grey-wolf optimization algorithms to improve the delay-
throughput relationship analysis and improve the cooperative multipath 
communication. 

The main challenges and issues in CRAHNs. Besides the basic 
challenges and issues such as (Spectrum Sensing, Spectrum Management 
and Allocation, Interference Management, Routing and Network Protocols, 
Security and Privacy), there are some of the principal issues are: 

− Minimize the energy consumption of the network while 
ensuring the reliable data transmission; it takes into account the dynamic 
spectrum availability and channel conditions to make routing decisions. 

− The interaction between primary users and secondary users that 
while achieving an optimal network performance. 

− Optimization of spectrum sensing and routing in cognitive 
radio ad hoc networks; routing decisions to maximize network throughput 
while avoiding interference to primary users. 

− Quality-of-service (QoS)-aware opportunistic routing in multi-
channel cognitive radio ad hoc networks. 

The main Contributions of this paper are: 
− Deep study of the Cognitive Radio Ad Hoc Network; 
− This work had made significant contributions to the 

understanding and development of cognitive radio systems; 
− Analysis of the existing studying of the delay, and degradation 

of packet delivery ratio due to non-consideration of network bandwidth and 
throughput problems; 

− Proposing a new modeled based on the “hybrid optimization 
model” to solve the above problems. 

Structure of this research paper. The rest of the article is organized 
as Section 2, which presents a review of related research works. Section 3 
presents the proposed system model and Section 4 explains the proposed 
hybrid optimization model and utilization of it in the OR strategy. Section 5 
evaluates the performance of the proposed model while Section 6 makes a 
conclusion about this routing model. 

2. Related Work. There are several research papers, which focus on 
the CRAHNs, these papers, serve as a starting point for understanding and 
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exploring the field of hybrid optimization-based spectrum-aware 
opportunistic routing in cognitive radio ad hoc networks. 

As stated above, the interest in the CRAHN routing models has been 
very high recently. Many existing efforts focus on developing OR strategy 
with channel assignment and maximizing network throughput. In [17], a 
new route metric called multichannel expected any path transmission time is 
proposed, which exploits the channel assorted variety and resource of 
multiple applicant forwarders for the opportunistic routing. In light of the 
new metric, a distributed algorithm named channel-aware opportunistic 
routing is also displayed. 

In study [18], an online opportunistic routing algorithm is proposed 
by utilizing multi-specialist support learning; introduces the concept of 
opportunistic spectrum access in cognitive radio networks and proposes an 
optimization-based approach for selecting the best available spectrum bands 
for communication. The proposed routing plan together addresses the 
connection and relay determination in light of transmission achievement 
probabilities. This advanced learning system effectively investigates 
openings in part recognizable and non-stationary conditions of CRAHNs. 

In study [19], the randomization structure is summed up, which is 
initially proposed for the information line changing to a SNR – based 
interference model in multi-hop wireless networks. Further, circulated 
power assignment and correlation calculation are produced, which 
accomplishes about 100% throughput. In study [20], a Bayesian decision 
rule-based algorithm to take care of the throughput maximization problem 
ideally with steady time multifaceted nature is proposed. To organize PU 
transmissions, the throughput maximization problem is re-detailed by 
adding a constraint on the PU throughput. 

In study [21], the throughput execution of the network is portrayed 
by utilizing a lining theoretic investigation, and throughput is additionally 
boosted by means of the use of the Lagrangian duality hypothesis. In study 
[22], by applying the convex optimization method, the shut-shape 
articulation for the ideal time portions is acquired to boost the sum 
throughput. To beat this problem, another execution metric known as the 
common throughput is proposed, which considers the additional constraint 
that all users ought to be designated with an equivalent rate paying little 
respect to their distances to the H-AP. 

In study [11], presents a hybrid optimization algorithm for 
opportunistic routing in cognitive radio ad hoc networks. This algorithm 
uses the hybrid artificial bee colony optimization to achieve a trade-off 
between exploration and exploitation in the route selection process, 
considering spectrum availability and energy efficiency. The authors 
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propose a routing protocol that takes into account the variation in channel 
conditions and utilizes a particle swarm optimization algorithm to select the 
best routes based on spectrum availability and link quality. 

In study [10] the authors developed the SMOR model,  the Spectrum-
Map-Empowered Opportunistic Routing (SMOR) model focuses on 
leveraging spectrum mapping techniques to enhance opportunistic routing 
in the cognitive radio ad hoc networks (CRAHNs). The model is designed 
to address the challenges posed by dynamic spectrum availability in 
CRAHNs; which was developed separately for both regular CRAHNs as 
SMOR-1 algorithm and large scale as regular CRAHNs as SMOR-2 
algorithm. By incorporating spectrum mapping and opportunistic routing, 
the SMORT model likely aims to improve spectrum utilization, enhance 
overall network performance, and mitigate the effects of varying spectrum 
availability in CRAHNs. 

SMOR-1 Algorithm (for regular CRAHNs): The SMOR-1 algorithm, 
specifically tailored for regular CRAHNs, aims to optimize opportunistic 
routing by utilizing a spectrum map. The spectrum map provides 
information about the availability and quality of different spectrum bands in 
the network. Based on this information, the SMOR-1 algorithm selects the 
most suitable spectrum band and path for data transmission, considering 
factors such as channel conditions and interference [10, 11, 26]. 

SMOR-2 Algorithm (for large-scale CRAHNs): The SMOR-2 
algorithm, developed for large-scale CRAHNs, extends the concepts of the 
SMOR-1 to address the scalability issues inherent in larger networks. It 
aims to efficiently utilization of spectrum resources while considering the 
challenges of topology dynamics and resource limitations in large-scale 
CRAHNs. The SMOR-2 algorithm may incorporate additional 
optimizations or techniques to handle the increased complexity and scale of 
the network [10]. 

In Stochastic geometry analysis for regular CRAHNs, the 
mathematical analysis for transmission delay of multi-hop communications 
is examined via Markov chain modelling and queuing network theory, and 
the SMOR-1 algorithm is proposed to exploit opportunistic selections for 
cooperative relay regarding link transmission qualities. For large-scale 
CRAHNs, the corresponding delay of opportunistic links is derived via 
stochastic geometry and queuing network analysis, and the SMOR-2 
algorithm is proposed to fulfill geographic opportunistic routing, exhibiting 
cooperative diversity in such large-scale networks [10, 26]. 

3. System Model. Due to the challenges that face the decentralized 
infrastructure of Cognitive radio ad hoc network, and due to the fact that 
CRAHN has no infrastructure backbone, we considered the system to 
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involve with a finite of (M= 10) Primary users (PUs), every PU has its own 
licensed spectrum to communication in specific spectrum band X′ ⊆ X 
where X is estimated area of 500m x500 m. 

PUs share an unused channel with Secondary Users (SUs) which are 
specified with (N=100) SUs when PU is in the off state, SU is able to find a 
PU spectrum hole to establish connection and communication with a single 
transmitter Tx and K receivers Rx over the time interval [t0, T ]. 

Let n denote the number of the transmitting and receiving pairs for 
SU and Tn= {1,2,..,n} denotes the set of SU where the pairs of transmitting 
and receiving of SU i (SU i for i∈N) are changeable based on the PU 
activities; that means, the licensed spectrum of PU i should be busy during 
transmitting and receiving of PU i, otherwise the opportunistic Spectrum 
will be available for SU i. Figure 1 shows the system model utilized in this 
paper [25 – 31]. 

This system model proposes a hybrid optimization-based routing 
protocol for cognitive radio ad hoc networks. It combines genetic 
algorithms and particle swarm optimization to optimize the routing path 
selection while considering spectrum availability. 
 

 
Fig. 1. System Model 

 
The following Table 1 illustrates the main parameters in the system 

model, the energy of transmission in PU i is denoted by piP, as well as the 
transmission energy in SU i is denoted by 𝑝𝑝𝑖𝑖𝑠𝑠, while it is supposed that the 
pairs of SU i transmitter/receiver are inside the communication range of each 
other. 
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Table 1. Simulation Parameter 

No. 
Simulation Parameters 

Parameter Parameter Value 

1 Simulation Area Size 500m x500 m. 
2 Simulation time 120s 
3 Number of CR-Nodes (SUs) 100 
4 Number of PU-Nodes 10 
5 Size of frames to be scheduled 64 to 196 kb 
6 Variable transmission time ranges 10–50 µs 

7 Number of channels utilized to schedule the 
frame transmission 35 

8 Size bandwidth available per channel 2 MB/s 
9 Distance between the Nodes Random 
10 Node Energy Capacity 250mAH 

 
4. Hybrid Firefly and Gray-Wolf optimization based on SMOR 

Model. This proposed routing model follows the processes in SMOR; the 
existing SMOR model has been shown to improve and enhance the network 
throughput, reduce the delay and the packet loss, then, enhance the network 
resilience to channel variations and node failures. However, it also required 
careful design and optimization of the spectrum sensing, channel selection, 
and opportunistic routing algorithms, as well as the handoff criteria and the 
routing metrics. 

Overall, the SMOR model is a promising approach to improve the 
performance and efficiency of cognitive radio ad hoc networks as explained 
in the previous relative work section in this paper; therefore, the proposed 
new approach is developed to enhance the performance, efficient 
opportunistic routing in CRAHN via hybrid firefly and Gray-Wolf 
optimization approach. 

Based on these strategies, the proposed HFGWO-SMOR model has 
developed. The relationship between the delay and throughput is optimized 
using the hybrid algorithms. 

The behavior of the fireflies and the Gray wolves are merged to 
develop this model. First, the basic concept of these two optimization 
models has been discussed in [25]. The flashing behaviors of fireflies are 
utilized to develop firefly-inspired algorithms. 

Firefly Approach (FA) and Gray Wolf Optimization Approach are a 
metaheuristic optimization algorithm. 
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4.1. Firefly Approach (FA). Xin-She Yang defined the Firefly 
Algorithm, which is an optimization algorithm that is based on the flashing 
characteristics of fireflies. It was proposed by the author in 2008 as a novel 
optimization technique to solve complex optimization problems. The 
algorithm is inspired by the properties of fireflies, which use their flashing 
behavior to attract mates and communicate with each other [33]. 

The algorithm then simulates the flashing characteristics of the 
fireflies, where the intensity of their flashes represents the quality of the 
solution they represent. On the other hand, the algorithm models the 
behavior of fireflies, which communicate with each other through 
bioluminescence. The brightness of a firefly's light is proportional to its 
attractiveness to other fireflies, and fireflies tend to move toward the 
brightest light they can see [23, 24]. 

Firefly Approach; this algorithm uses a set of parameters, such as the 
light absorption coefficient and the step size, to control the movement of the 
fireflies. On the other hand, the firefly’s movements are also influenced by 
the distance between the fireflies, with closer fireflies having a stronger 
attraction. 

The Firefly algorithm has been shown to be effective in solving a 
wide range of optimization problems, including function optimization, 
parameter estimation, and machine learning. It is also known for its 
simplicity and fast convergence rate. 

The proposed hybrid algorithm is developed by hybridizing both of 
these behaviors. For a maximization problem, it obtains the highest possible 
value of the fireflies function, the brightness and flashing can be 
proportional to the value of the possible objective function. In maximum 
optimization problems, the brightness I of a firefly at a particular location x 
can be chosen as I(x) ∝ f(x). However, the attractiveness β is relative; it 
should be seen in the eyes of the beholder or judged by the other fireflies. 

Thus, it will vary with the distance rij between firefly i and firefly j. 
In addition, light intensity decreases with the distance from its source, and 
light is also absorbed in the media, so we should allow the attractiveness to 
vary with the degree of absorption [23 – 26]: 
 

2

, 0 ,ijr
i j e γβ β −=  (1) 

 
where β0 is the attractiveness at r=0.and γ is the light exhaust coefficient. 
The distance between two transmitters of i and receiver j is arrived using 
deff. The movement of transmitter i as its being powered by the brighter 
receiver j is calculated as follows: 
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( )2

0 ,ijr t t
i j i ix e x xγβ αε−∆ = − +  (2) 

 
where the γ second term is due to the attraction. The third term ∝  is a 
randomization vector drawn from a Gaussian disposal. 

The algorithm uses the following phases: 
1. Initialization: Generate an initial population of fireflies with 

random positions and intensities. 
2. Fitness Evaluation: Evaluate the fitness of each firefly based on 

the problem's objective function. 
3. Attraction: Move each firefly towards the brightest firefly 

(i.e., the one with the highest intensity) in its vicinity, where the degree of 
attraction is based on the distance between the fireflies and their intensities. 

4. Randomization: Introduce random movement to each firefly to 
prevent premature convergence and to explore new areas of the search 
space. 

5. Updating: Update the positions and intensities of the fireflies 
based on their movements and fitness values. 

6. Termination: The algorithm stops when a certain stopping 
criterion is met, such as a maximum number of iterations, or when the 
desired accuracy is achieved. 

Definition: Light intensity: The light intensity of each firefly is 
calculated as follows: 
 

( ) ,_   _I i f x i=  (3) 
 
where I_i is the light intensity of firefly i and f(x_i) is the fitness value of 
firefly i. 

Attraction: Each firefly is attracted to other fireflies based on their 
light intensity and distance. The attraction of firefly i towards firefly j is 
calculated as follows: 
 

,_   _   _r ij x j x i= −  (4) 
 

2* ( * _ ^ ),_ 0beta beta exp gamma r ij= −  (5) 
 

( )_   _    *  _   _    *  _x i x i alpha x j x i beta epsilon i= + − + , (6) 
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where r_ij is the Euclidean distance between fireflies i and j, beta_0 is the 
initial attractiveness, gamma is the light absorption coefficient, alpha is the 
step size, and epsilon_i is a random vector with values drawn from a 
Gaussian distribution [27 – 32]. 

4.2. Gray Wolf Optimization Approach. In 2014, in studies 
[31, 34] the authors proposed the Gray Wolf Optimization (GWO) 
algorithm, inspired by the social hierarchy and hunting behavior of gray 
wolves in the wild. 

It simulates the hunting behavior of wolves, the algorithm starts with 
an initial population of wolf packs where the range of each pack is from 5 to 
12 wolves, each pack consisting of alpha, beta, and delta wolves. In the 
GWO algorithm, a population of wolves is used to search for the optimal 
solution to a problem. The alpha wolf is responsible for leading the hunting, 
while the beta and delta wolves assist the alpha wolf in the hunting process 
[33, 34]. 

The GWO algorithm optimizes a function by updating the positions 
of wolves, which represent the best solutions found so far. The algorithm is 
based on the social behavior of gray wolves, where each wolf has a specific 
role in the pack and works together to achieve a common goal. 

Definition: The algorithm iteratively searches for the optimal 
solution by simulating the hunting behavior of the wolf packs. During each 
iteration, the alpha wolf updates its position based on its hunting 
experience, while the beta and delta wolves adjust their positions based on 
the alpha wolf's position. The alpha wolf represents the best solution found 
so far, the beta wolf represents the second-best solution, and the delta wolf 
represents the third-best solution [35]. 

At each iteration, the positions of the wolves are updated using the 
following equation [32, 33]: 
 

𝑥𝑥′𝑖𝑖𝑖𝑖=𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑎𝑎 ∗ (2∗𝑟𝑟1−1) ∗ | 𝐴𝐴∗𝑥𝑥𝑎𝑎𝑥𝑥𝑝𝑝ℎ𝑎𝑎 − 𝑥𝑥𝑖𝑖𝑖𝑖 |, (7) 
 
where 𝑥𝑥′𝑖𝑖𝑖𝑖 is the updated position of the 𝑖𝑖-th wolf in the 𝑖𝑖-th dimension, 𝑥𝑥𝑖𝑖𝑖𝑖 
is the current position of the 𝑖𝑖-th wolf in the 𝑖𝑖-th dimension, 𝑎𝑎 is a 
coefficient that decreases linearly from 2 to 0 as the number of iterations 
increases, 𝑟𝑟1 is a random number between 0 and 1, and 𝐴𝐴∗𝑥𝑥𝑎𝑎𝑥𝑥𝑝𝑝ℎ𝑎𝑎 is the 
position of the alpha wolf. 

The Gray Wolf Optimization algorithm steps: 
1. Initialization: The algorithm starts with an initial population of 

n search wolves (where CR user searches for free Spectrum holes) that are 
randomly distributed in the search space. 
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2. Fitness evaluation: The fitness of each search wolf (get a 
Spectrum-hole that belongs to PUs) is evaluated by applying the objective 
function of the optimization problem to its corresponding search space. The 
search wolf is ranked according to their fitness values, with the best (i.e., 
lowest) fitness values having the highest rank. 

3. Pack updating (alpha, beta, and delta) wolves: The algorithm 
identifies the three best wolves in the population. The position of these 
wolves is then updated based on the positions of the other wolves in the 
population. The three search agents with the highest ranks are designated as 
the alpha, beta, and delta wolves, respectively. 

4. Solution update: The algorithm updates the positions of the 
candidate solutions, and checks if the new solutions improve the overall 
fitness of the pack. 

Definition: The algorithm continues to update the positions of the 
wolves until a stopping criterion is met, such as reaching a maximum 
number of iterations or a satisfactory solution [35]. 
Updating the position of the alpha wolf: 
 

D_alpha = |C1 * X_alpha - X_i|, (8) 
 

X1 = X_alpha - A1 * D_alpha. (9) 
 
Updating the position of the beta wolf: 
 

D_beta = |C2 * X_beta - X_i|, (10) 
 

X2 = X_beta - A2 * D_beta. (11) 
 
Updating the position of the delta wolf: 
 

D_delta = |C3 * X_delta - X_i|, (12) 
 

X3 = X_delta - A3 * D_delta. (13) 
 
Updating the position of the other wolves: 
 

X_i = (X1 + X2 + X3) / 3, (14) 
 
where X_i is the position of the i-th wolf, X_alpha, X_beta, and X_delta are 
the positions of the alpha, beta, and delta wolves, respectively, C1, C2, and 
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C3 are random vectors between 0 and 1, A1, A2, and A3 are constants that 
control the step size of the update. 

These equations of GWO are applied to each candidate solution 
(wolf) in the population in each iteration of the algorithm, and the process 
continues until a stopping criterion is met (e.g., a maximum number of 
iterations or a desired level of convergence). 

The steps of the HFGWO Approach: 
1. Initialize values of Firefly Approach (FA) parameters: 

population, maximum iterations, attraction coefficient, etc.… 
2. Initialize Gray Wolf Optimization (GWO) parameters: 

population (primary-users), search agents (CR-User). 
3. Generate initial fireflies. 
4. Evaluate fitness and update light intensity. 
5. Find the brightest firefly. 
6. Update information. 
7. Feed FA results to GWO. 
8. GWO initializes search agents and solutions. 
9. Evaluate fitness. 
10. Compare with other agents to determine the best search agent. 
11. Verify the result of FA. 
12. Return the best grey-wolf firefly agent. 
Based on this concept of HFGWO, the SMOR routing model is 

modified and improved. The proposed model initializes the nodes as 
fireflies and selects the best firefly using FA while it is cross-checked using 
GWO to verify the best selection. This concept is presented in the following 
algorithm. 
 

Algorithm 1. HFGWO-SMOR 
Initialize network parameters (Number of PUs, SUs, Data Rate, etc...) 
Partition traffic into batches of packets  
For each time slot  

Source Collect link information  
Prioritize forwarding nodes  
Select data packets for each path via HFGWO  
Initialize FA & GWO parameters: (population, maximum iterations, an 

attraction coefficient and algorithm parameters). 
Find the brightest of fireflies with a high attraction coefficient 
Change attractive level and distance  
Select the best Firefly node  
Feed FA result to GWO  
Verify the node information using GWO 
Initialize the best three solutions, the first best solution as ҳα, the second 

best solution as ҳβ, and the third best solution as ҳδ, respectively. 
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While (k < maximum number of iterations or a desired level of 
convergence)  
For i= 1:n  

Update the current position of the search agent based on the 
desired level of convergence 

End for  
Evaluate the fitness. 
Update the coefficient vector  
If there is a better solution, then update the best agents, ҳα, ҳβ and ҳδ. 
k=k+1;  
Return the best forwarding node  
Update the parameters  
Send test data  
If ACK is not received  
Initiate path-checking process  
For each relay node  
      Check the packet transmission information  
Update lists  
Return packet data  
End While 

Transmit data  
End For 
 
5. Performance Evaluation. The proposed HFGWO-SMOR routing 

model is evaluated using MATLAB. The routing performance of this model 
is compared with that of SMOR [10], HABC-SOR [11], HB-SOR [12] and 
HFSA-SOR [13]. The simulation environment is set as in [10 – 16] and the 
comparisons are simulated in concepts of end-to-end delay (EED), Bit Error 
Rate (BER), throughput and packet delivery ratio. MATLAB simulators 
provide a framework for modeling the various network components and 
their interactions. 

5.1. Delay. Simulating delays in cognitive radio ad hoc networks 
involves modeling the various factors that contribute to delays in the 
network. Delays in the network can be caused by factors such as 
propagation delay, queuing delay, processing delay, and transmission delay. 
Delay simulation in cognitive radio ad hoc networks can be represented 
mathematically using a queuing model; queuing models provide a 
framework for modeling the arrival and service processes in a network, and 
can be used to estimate the queuing delay and other performance 
metrics [29]. 

One commonly used queuing model for delay simulation in 
cognitive radio networks is the M/G/1 queuing model. In this model, 
packets arrive according to a Poisson process with rate λ. The queuing delay 
for each packet can then be calculated as: 
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D = (ρ/(μ-λ)) * (1/2 + (V/2μ)^2), (15) 
 
where ρ = λ/μ is the traffic intensity, and V is the coefficient of variation of 
the service time distribution. This equation assumes that the service time 
distribution is memoryless, which is a reasonable assumption for many 
communication protocols in cognitive radio networks. 
 

Total delay = Propagation delay + Queuing delay + Processing 
delay + Transmission delay. (16) 

 
Propagation delay: Propagation delay is the time it takes for a signal to be 
traveled from the transmitter to the receiver, and is dependent on the 
distance between the nodes and the propagation speed of the medium. 
Mathematically, propagation delay can be expressed as: 
 

Propagation delay = distance between nodes / propagation speed 
of the medium. (17) 

 
Queuing delay: Queuing delay is the time it takes for packets to wait in a 
buffer before they can be transmitted, and is dependent on the network 
congestion and the size of the buffer: 
 

Queuing delay = packet size / available bandwidth. (18) 
 
Processing delay: Processing delay is the time it takes for the node to 
process a packet before forwarding it, and is dependent on the processing 
power of the node [30 – 37]. Mathematically, processing delay can be 
expressed as: 
 

Processing delay = packet size / processing power of the node. (19) 
 
Transmission delay: Transmission delay is the time it takes for the packet 
to be transmitted over the wireless medium, and is dependent on the 
bandwidth of the channel and the size of the packet. Mathematically, 
transmission delay can be expressed as: 
 

Transmission delay = packet size / available bandwidth. (20) 
 

5.2. Throughput: The throughput of a cognitive radio ad hoc 
network is affected by various factors such as the number of nodes in the 
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network, the data rate of the channel, the propagation delay, the processing 
delay, and the queuing delay [28, 29]. 

By using appropriate values for these parameters and applying the 
following equation, one can simulate the throughput of the network and 
analyze the performance of the network under different scenarios. 

The throughput in HFGWO-SMOR Model is modeled 
mathematically using the following equation: 
 

Throughput = total number of bits received / total time, (21) 
 
where the total number of bits received is the number of bits received by all 
the nodes in the network during a given period of time, and the total time is 
the time taken for all the bits to be received. The total number of bits 
received can be calculated as: 
 

Total number of bits received = number of nodes * data rate * time, (22) 
 
where the number of nodes is the number of nodes in the network, data rate 
is the data rate of the channel, and time is the period of time for which the 
data rate is measured. The total time can be calculated as: 
 

Total time = transmission time + propagation delay + processing 
delay + queuing delay. (23) 

 
By the way, Table 1 shows the main parameters to simulate the 

delays and throughput in our system model, in order to model delays in the 
network; one can configure the simulator to include parameters such as the 
distance between nodes, the buffer size, the processing power of the nodes, 
and the bandwidth of the channel. By adjusting these parameters, one can 
simulate different network scenarios and measure the resulting delays. 

It is also important to consider the impact of interference in the 
network, as cognitive radio networks rely on the ability to detect and avoid 
interference. Simulating interference was done by introducing competing 
signals in the network, or by modeling the spectrum sensing capabilities of 
the nodes. 

We obtained the total delay in a cognitive radio ad hoc network in 
our research. The resulting delay value is used to evaluate the performance 
of the network and to compare different network configurations and 
scenarios, the Figure 2 shows the EED vs. lambda comparison of SMOR, 
HABC-SOR, HB-SOR, HFSA-SOR and the proposed HFGWO-SMOR. 
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HFGWO-SMOR shows a remarkable improvement in the packet 
delay aspect, which leads to minimizing the delay in all levels of the offered 
load with an average of 4%, HFGWO-SMOR model reduced delay than 
other models because of the improved optimal selection of the routing 
paths. 
 

 
Fig. 2. End-to-end delay 

 
Figure 3 shows the BER vs. lambda comparison of SMOR, HABC-

SOR, HB-SOR, HFSA-SOR and the proposed HFGWO-SMOR. HFGWO-
SMOR shows a lower error rate with a 4% decrease on average while other 
models have comparatively higher BER. This is because the path selection 
is highly reliable in the proposed model. 
 

 
Fig. 3. BER comparison 
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Figure 4 shows the Throughput vs. lambda comparison of SMOR, 
HABC-SOR, HB-SOR, HFSA-SOR and the proposed HFGWO-SMOR. 
HFGWO-SMOR provides a higher throughput rate with a 3% increase on 
average due to a significant selection of optimal paths while other models 
have comparatively less throughput. 
 

 
Fig. 4. Throughput comparison 

 
Figure 5 shows the Packet delivery ratio vs. no. of nodes comparison 

of SMOR, HABC-SOR, HB-SOR, HFSA-SOR and the proposed HFGWO-
SMOR. 
 

 
Fig. 5. Packet delivery ratio 
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HFGWO – SMOR provides a higher packet delivery ratio, which is 
almost 22% higher than the SMOR model and  significantly higher than 
other models. From the performance evaluation results, it was found that the 
proposed HFGWO-SMOR model has better performance than other models 
in providing efficient opportunistic routing. 

6. Conclusions. This paper aimed at developing an improved 
opportunistic routing model that can resolve the limitations of the SMOR 
model. This has been achieved by the HFGWO-based SMOR routing model 
that further improves the opportunistic routing behavior. The proposed 
HFGWO-SMOR model follows the process of SMOR with additional 
improvement achieved in the optimal selection routing paths. The 
experimental results also prove that the proposed model has reduced delay, 
less error rate, improved throughput and improved packet delivery ratio. This 
model provides more efficient opportunistic routing performance than the 
other models compared including SMOR, which is evident from the 
evaluation results. In the future, the feasibility of improving this model by 
adding viable concepts of path loss, node failures, and power consumption 
will be examined. 
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Х.М. АБДУЛЛА, А. КУМАР, А.А. КАСЕМ АХМЕД, М.А. САИД МОСЛЕХ 
ОППОРТУНИСТИЧЕСКАЯ МАРШРУТИЗАЦИЯ НА ОСНОВЕ 

ГИБРИДНОЙ ОПТИМИЗАЦИИ С УЧЕТОМ СПЕКТРА ДЛЯ 
САМООРГАНИЗУЮЩИХСЯ СЕТЕЙ КОГНИТИВНОЙ 

РАДИОСВЯЗИ 
 

Абдулла Х.М., Кумар А., Касем Ахмед А.А., Саид Мослех М.А. Оппортунистическая 
маршрутизация на основе гибридной оптимизации с учетом спектра для 
самоорганизующихся сетей когнитивной радиосвязи. 

Аннотация. Оппортунистическая маршрутизация повысила эффективность и 
надежность в самоорганизующихся сетях когнитивной радиосвязи (CRAHN). Многие 
исследователи разработали модели оппортунистической маршрутизации, в том числе 
модель оппортунистической маршрутизации на базе карты спектра (SMOR), которая 
считается более эффективной моделью в этой области. Однако в SMOR существуют 
определенные ограничения, которые требуют внимания и устранения. В данной статье 
рассматривается проблема задержки и ухудшения коэффициента доставки пакетов из-за 
неучета пропускной способности сети. Чтобы решить эти проблемы, в базовой модели 
маршрутизации SMOR используется гибридный алгоритм оптимизации, состоящий из 
алгоритмов оптимизации Firefly и Grey Wolf. Разработанная таким образом гибридная 
модель маршрутизации SMOR на основе оптимизации Firefly и Grey-Wolf 
(HFGWOSMOR) повышает производительность за счет высокой локальной и 
глобальной поисковой оптимизации. Первоначально анализируется взаимосвязь между 
задержкой и пропускной способностью, а затем устанавливается совместная 
многолучевая связь. Предлагаемая модель маршрутизации также вычисляет значения 
энергии принимаемых сигналов в пределах порога полосы пропускания и периода 
времени, и, следовательно, проблемы с производительностью, обнаруженные в SMOR, 
решаются. Чтобы оценить её эффективность, предложенная модель сравнивается со 
SMOR и другими существующими моделями оппортунистической маршрутизации, 
которые показывают, что предлагаемая модель HFGWOSMOR работает лучше, чем 
другие модели.  

Ключевые слова: самоорганизующиеся сети когнитивной радиосвязи, 
оппортунистическая маршрутизация, оппортунистическая маршрутизация на базе карты 
спектра, оптимизация Firefly, оптимизация Grey-Wolf, порог пропускной способности. 
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